direct system and direct limit of v h -modules
نویسندگان
چکیده
the largest class of algebraic hyper structures satisfying the module like axioms is the v h -module. in this paper, we consider the category of v h -modules and prove that the direct limit alwaysexists in this category. direct limits are defined by a universal property, and so are unique. the mostpowerful tool in order to obtain a module from a given v h - module is the quotient out procedure. to usethis method we consider the fundamental equivalence relationε * , and then prove some of the resultsabout the connection between the fundamental modules, direct systems and direct limits.
منابع مشابه
DIRECT SYSTEM AND DIRECT LIMIT OF vH - MODULES
The largest class of algebraic hyper structures satisfying the module like axioms is the v H module. In this paper, we consider the category of v H -modules and prove that the direct limit always exists in this category. Direct limits are defined by a universal property, and so are unique. The most powerful tool in order to obtain a module from a given v H module is the quotient out procedure. ...
متن کاملWeight Modules of Direct Limit Lie Algebras
In this article we initiate a systematic study of irreducible weight modules over direct limits of reductive Lie algebras, and in particular over the simple Lie algebras A(∞), B(∞), C(∞) and D(∞). Our main tool is the shadow method introduced recently in [DMP]. The integrable irreducible modules are an important particular class and we give an explicit parametrization of the finite integrable m...
متن کاملDirect Limit of Krasner (m, n)-Hyperrings
The purpose of this paper is the study of direct limits in category of Krasner (m, n)-hyperrings. In this regards we introduce and study direct limit of a direct system in category (m, n)-hyperrings. Also, we consider fundamental relation , as the smallest equivalence relation on an (m, n)-hyperring R such that the quotient space is an (m, n)-ring, to introdu...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولModules whose direct summands are FI-extending
A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$. It is not known whether a direct summand of an FI-extending module is also FI-extending. In this study, it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 28
شماره 2 2004
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023